İstanbul Kültür Üniversitesi
Matematik - Bilgisayar Bölümü

MC 886 İntegral Denklemler

26 Nisan 2013

Arasnav II

CEVAPLAR

Görmətlər:

Başarılars.

Emel Yavuz Duman, Ph.D.
Aşağıda verilen birinci cins Fredholm integral denklemine regulasyon uyguladıktan sonra Adomian ayrıştırma metodu ile çözünüz.

\[\frac{1}{2} e^{3x} = \int_{0}^{1/2} e^{3x-3t} u(t) \, dt \]

Cevap. \(\mu > 0 \) olmak üzere verilen integral denklem regulasyon uyguladıktan sonra

\[u_\mu(x) = \frac{1}{2\mu} e^{3x} - \frac{1}{\mu} \int_{0}^{1/2} e^{3x-3t} u_\mu(t) \, dt \]

haline gelir. Bu integral denklem Adomian ayrıştırma metodu ile çözümü aşağıdaki şekilde elde edilir: \(u_\mu(x) \) bilinmeyen fonksiyonunun \(u_\mu(x) = \sum_{n=0}^{\infty} u_{\mu_n}(x) \) şeklinde bir seri açılm olsun. Buna göre

\[
\begin{align*}
 u_{\mu_0}(x) & = f(x) = \frac{1}{2\mu} e^{3x} \\
 u_{\mu_1}(x) & = -\frac{1}{\mu} \int_{0}^{1/2} e^{3x-3t} \frac{1}{2\mu} e^{3t} \, dt = -\frac{1}{2\mu^2} e^{3x} \bigg|_0^{1/2} = -\frac{e^{3x}}{(2\mu)^2} \\
 u_{\mu_2}(x) & = -\frac{1}{\mu} \int_{0}^{1/2} e^{3x-3t} \left(-\frac{e^{3x}}{(2\mu)^2} \right) \, dt = \frac{1}{2\mu^3} e^{3x} t \bigg|_0^{1/2} = \frac{e^{3x}}{(2\mu)^3} \\
 \vdots \\
 u_{\mu_n}(x) & = \frac{(-1)^n e^{3x}}{(2\mu)^{n+1}}
\end{align*}
\]

olduğundan

\[
\begin{align*}
 u_\mu(x) & = \frac{e^{3x}}{2\mu} \left(1 - \frac{1}{2\mu} + \frac{1}{(2\mu)^2} - \frac{1}{(2\mu)^3} + \cdots \right) \\
 & = \frac{e^{3x}}{2\mu} \cdot \frac{2\mu}{1 + 2\mu} = \frac{e^{3x}}{1 + 2\mu}
\end{align*}
\]

elde edilir. Dolayısıyla aranan çözüm

\[u(x) = \lim_{\mu \to 0} u_\mu(x) = \lim_{\mu \to 0} \frac{e^{3x}}{1 + 2\mu} = e^{3x} \]

şeklinde bulunur.
Soru 2.

Aşağıda verilen Fredholm integral denklemi doğrudan çözüm metodu ile çözünüz.

\[u(x) = \sin x + \lambda \int_0^{\pi/2} \sin x \cos tu(t)dt \]

Cevap. Verilen denklemin çekirdeği dejenere formda olduğundan

\[u(x) = \sin x + \lambda \sin x \int_0^{\pi/2} \cos tu(t)dt \]

yazılabilir. Buna göre

\[\alpha = \int_0^{\pi/2} \cos tu(t)dt \] olduğundan \(u(x) = \sin x + \lambda \alpha \sin x = (1 + \lambda \alpha) \sin x \)

dir. Dolaysıyla aranan çözüm

\[\alpha = \int_0^{\pi/2} \cos t(1 + \lambda \alpha) \sin tdt \]

\[= (1 + \lambda \alpha) \int_0^{\pi/2} \cos t \sin tdt \]

\[= (1 + \lambda \alpha) \int_0^1 vdv = (1 + \lambda \alpha) \frac{v^2}{2} \bigg|_0^1 = \frac{1 + \lambda \alpha}{2} \]

yani

\[\alpha = \frac{1 + \lambda \alpha}{2} \Rightarrow \alpha = \frac{1}{2 - \lambda} (\lambda \neq 2) \]

olduğundan

\[u(x) = \left(1 + \frac{\lambda}{2 - \lambda}\right) \sin x \Rightarrow u(x) = \frac{2}{2 - \lambda} \sin x (\lambda \neq 2) \]

şeklinde elde edilir.
Soru 3.
Aşağıda verilen Fredholm integral denklemi ardışık yaklaşım metodu ile çözünüz.

\[u(x) = \sin x + \lambda \int_0^{\pi/2} \sin x \cos tu(t)dt \]

Cevap. Başlangıç yaklaşımını \(u_0(x) = 0 \) olarak seçilsin. Buna göre

\[u_1(x) = \sin x \]

\[u_2(x) = \sin x + \lambda \sin x \int_0^{\pi/2} \cos t \sin t dt = \sin x + \lambda \sin x \left. \frac{\sin^2 t}{2} \right|_0^{\pi/2} = \sin x + \frac{\lambda}{2} \sin x \]

\[= \left(1 + \frac{\lambda}{2} \right) \sin x \]

\[u_3(x) = \sin x + \lambda \sin x \int_0^{\pi/2} \cos t \left(1 + \frac{\lambda}{2} \right) \sin t dt = \sin x + \lambda \left(1 + \frac{\lambda}{2} \right) \frac{1}{2} \sin x \]

\[= \left(1 + \frac{\lambda}{2} + \frac{\lambda^2}{2^2} \right) \sin x \]

\[\vdots \]

\[u_n(x) = \left(1 + \frac{\lambda}{2} + \frac{\lambda^2}{2^2} + \cdots + \frac{\lambda^n}{2^n} \right) \sin x \]

elde edilir. Dolayısıyla

\[u(x) = \lim_{n \to \infty} u_n(x) = \frac{1}{1 - \frac{\lambda}{2}} \sin x = \frac{2}{2 - \lambda} \sin x \quad (0 < \lambda < 2) \]

dır.
Aşağıda verilen birinci cins Volterra integral denklemi ikinci cins çevirip Laplace dönüşüm metodu ile çözünüz.

\[
\sin x - x \cos x = \int_0^x 2 \sinh(x-t)u(t)dt
\]

Cevap. Öncelikle verilen integral denklem Leibniz kuralı da kullanılarak alnarak türevi alınırsa

\[
\cos x - \cos x + x \sin x = 2 \sinh(x-x)u(x) + 2 \int_0^x \frac{\partial \sinh(x-t)}{\partial x}u(t)dt
\]

\[
x \sin x = 2 \int_0^x \cosh(x-t)u(t)dt
\]

\[
\sin x + x \cos x = 2 \cosh(x-x)u(x) + 2 \int_0^x \frac{\partial \cosh(x-t)}{\partial x}u(t)dt
\]

\[
\sin x + x \cos x = 2u(x) + 2 \int_0^x \sinh(x-t)u(t)dt
\]

yani

\[
u(x) = \frac{1}{2} \sin x + \frac{1}{2} x \cos x - \int_0^x \sinh(x-t)u(t)dt
\]

elde edilir. Konvolüsyon teoremi göz önüne alınarak yukarıdaki eşitliğin her iki taraflı Laplace operatörü uygulanırsa

\[
\mathcal{L}\{u(x)\} = \frac{1}{2} \mathcal{L}\{\sin x\} + \frac{1}{2} \mathcal{L}\{x \cos x\} - \mathcal{L}\left\{\int_0^x \sinh(x-t)u(t)dt\right\}
\]

\[
= \frac{1}{2} \mathcal{L}\{\sin x\} + \frac{1}{2} \mathcal{L}\{x \cos x\} - \mathcal{L}\{\sinh(x) * u(x)\}
\]

\[
U(s) = \frac{1}{2} \cdot \frac{1}{s^2 + 1} + \frac{1}{2} \cdot \frac{s^2 - 1}{(s^2 + 1)^2} - \frac{1}{s^2 - 1}U(s) \Rightarrow
\]

\[
\left(\frac{s^2}{s^2 - 1}\right)U(s) = \frac{1}{2} \cdot \frac{2s^2}{(s^2 + 1)^2} \Rightarrow
\]

\[
U(s) = \frac{s^2 - 1}{(s^2 + 1)^2}
\]

elde edilir. Buna göre aranan çözüm

\[
\mathcal{L}^{-1}\{U(s)\} = \mathcal{L}^{-1}\left\{\frac{s^2 - 1}{(s^2 + 1)^2}\right\}
\]

yani

\[
u(x) = x \cos x
\]

olarak bulunur.
Soru 5.

Aşağıda verilen Fredholm integral denklemini seri metodu ile çözünüz.

\[u(x) = 5x + \int_{-1}^{1} (1 - xt)u(t)dt \]

Cevap. \(u(x) \) bilinmeyen fonksiyonunun \(u(x) = \sum_{n=0}^{\infty} a_n x^n \) şeklinde bir seri açılımı olsun. Bu açılım verilen integral denklemdede kullanırsıa

\[
\sum_{n=0}^{\infty} a_n x^n = 5x + \int_{-1}^{1} (1 - xt) \sum_{n=0}^{\infty} a_n t^n dt
\]

\[
= 5x + \int_{-1}^{1} \left(\sum_{n=0}^{\infty} a_n t^n - x \sum_{n=0}^{\infty} a_n t^{n+1} \right) dt
\]

\[
= 5x + \left(\sum_{n=0}^{\infty} \frac{a_n}{n+1} t^{n+1} - x \sum_{n=0}^{\infty} \frac{a_n}{n+2} t^{n+2} \right)_{-1}^{1}
\]

\[
= 5x + \left(a_0 t + \frac{a_1}{2} t^2 + \frac{a_2}{3} t^3 + \cdots \right)_{-1}^{1} - x \left(\frac{a_0}{2} t^2 + \frac{a_1}{3} t^3 + \frac{a_2}{4} t^4 + \cdots \right)_{-1}^{1}
\]

\[
= \left(2a_0 + \frac{2a_2}{3} + \frac{2a_4}{5} + \frac{2a_6}{7} + \cdots \right) + \left(5 - \frac{2a_1}{3} - \frac{2a_3}{5} - \frac{2a_5}{7} - \cdots \right) x
\]

değildir. Buna göre her \(n \geq 2 \) için \(a_n = 0 \)'dır. Dolayısıyla

\[
a_0 = 2a_0 \Rightarrow a_0 = 0
\]

\[
a_1 = 5 - \frac{2}{3} a_1 \Rightarrow a_1 = 3
\]

yani

\[u(x) = 3x \]

şeklinde çözüm bulunur.
Soru 6.
Aşağıda verilen Fredholm integral denkleminin gürültü terimi olgusu ile bir çözümü bulunabileceğini gösteriniz.

\[u(x) = x^2 + x \cos x + \frac{\pi^3}{3} x - 2x - x \int_0^\pi u(t)dt \]

Cevap. \(u(x) \) bilinmeyen fonksiyonunun \(u(x) = \sum_{n=0}^{\infty} u_n(x) \) şeklinde bir seri açılım olursun. Buna göre

\[
\begin{align*}
 u_0(x) &= x^2 + x \cos x + \frac{\pi^3}{3} x - 2x \\
 u_1(x) &= -x \int_0^\pi \left(t^2 + t \cos t + \frac{\pi^3}{3} t - 2t \right) dt \\
 &= -x \left(-t^2 + \frac{\pi^3 t^2}{6} + \frac{t^3}{3} + \cos t + t \sin t \right)_0^\pi \\
 &= -x \left(-2 - \pi^2 + \frac{\pi^3}{3} + \frac{\pi^5}{6} \right) \\
 &= 2x + \pi^2 x - \frac{\pi^3}{3} x - \frac{\pi^5}{6} x
\end{align*}
\]

olduğundan gürültü terimleri \(\pm 2x \) ve \(\pm \frac{\pi^3}{3} x \) şeklinde elde edilir. Buna göre aranan çözüm adayı

\[u_*(x) = x^2 + x \cos x \]

olarak bulunur. Şimdi \(u_*(x) \)’ın verilen integral denklemi gerçeklediğini gösterelim:

\[
\begin{align*}
 \text{Sağ Yan} &= x^2 + x \cos x + \frac{\pi^3}{3} x - 2x - x \int_0^\pi (t^2 + t \cos t) dt \\
 &= x^2 + x \cos x + \frac{\pi^3}{3} x - 2x - x \left(\frac{t^3}{3} + \cos t + t \sin t \right)_0^\pi \\
 &= x^2 + x \cos x + \frac{\pi^3}{3} x - 2x - x \left(-2 + \frac{\pi^3}{6} \right) \\
 &= x^2 + x \cos x = u_*(x).
\end{align*}
\]

Buna göre \(u_*(x) = u(x) = x^2 + x \cos x \) olarak elde edilir.